
Implementation of a Database System with Boolean AlgebraConstraintsbyAndr�as Salamon
A THESISPresented to the Faculty ofThe Graduate College at the University of NebraskaIn Partial Ful�llment of RequirementsFor the Degree of Master of ScienceMajor: Computer ScienceUnder the Supervision of Professor Peter Z. ReveszLincoln, NebraskaMay, 1998

Implementation of a Database System with Boolean Algebra ConstraintsAndr�as Salamon, M.S.University of Nebraska, 1998Advisor: Peter Z. ReveszThis thesis describes an implementation of a constraint database system withconstraints over a Boolean Algebra of sets. The system allows within the inputdatabase as well as the queries equality, subset-equality and monotone inequalityconstraints between Boolean Algebra terms built up using the operators of union,intersection and complement. Hence the new system extends the earlier DISCOsystem, which only allowed equality and subset-equality constraints between Booleanalgebra variables and constants.The new system allows Datalog with Boolean Algebra constraints as the query lan-guage. The implementation includes an extension of Naive and Semi-Naive evaluationmethods for Datalog programs and algebraic optimization techniques for relationalalgebra formulas.The thesis also includes three example applications of the new system in the areaof family tree genealogy, genome map assembly, and two-player game analysis. Ineach of these three cases the optimization provides a signi�cant improvement in therunning time of the queries.

ACKNOWLEDGMENTSI would like to express my deepest appreciation to my advisor Dr. Peter Reveszfor his guidance and encouragement on this project. I also thank Dr. Jean-CamilleBirget and Dr. Spyros Magliveras for serving on my advisory committee and for theirtime.I would like to dedicate my thesis for the memories of my grandfathers K�arolyN�emeth and S�andor Salamon.

Contents
1 Datalog with Boolean Algebra Constraints 61.1 Boolean Algebra . 61.2 Syntax of Datalog Queries with Boolean Constraints 81.3 Quanti�er elimination . 81.3.1 Elimination method for equality constraints 91.3.2 Elimination method for precedence and monotone inequalityconstraints . 91.4 Naive and Semi-naive evaluation methods 101.4.1 Naive method . 101.4.2 Semi-Naive method . 111.4.3 EVAL function . 131.4.4 EVAL INCR function . 132 Implementation 162.1 The implemented Boolean Algebra 162.1.1 Sets . 162.2 Implemented quanti�er elimination methods 172.3 Hardware and Software . 171

2
2.4 Java program . 172.4.1 Packages . 173 Relational Algebra Formulas 223.1 Relational Algebra Formulas . 223.1.1 Converting a Rule . 233.1.2 Converting a Relation . 233.2 Optimization of Relational Algebra Formulas 243.3 Algebraic Manipulation . 253.3.1 Laws . 253.3.2 Principles . 273.3.3 The Algorithm . 273.4 Calculating multiple joins . 354 User's Manual 384.1 Switches . 394.2 Commands . 404.3 Input �le format . 425 Examples 445.1 Ancestors example . 445.1.1 The problem . 445.1.2 The input database . 445.1.3 The Datalog program . 455.1.4 The output database . 465.1.5 Execution complexity . 46

3
5.1.6 Run-time results . 495.2 Genome Map . 495.2.1 The problem . 495.2.2 Solution . 505.2.3 Concrete examples . 535.3 Unavoidable Sets . 565.3.1 Problem . 565.3.2 Solution . 565.3.3 Example . 586 Multisets 606.1 Introduction . 606.2 Extension of the program . 606.3 An example . 626.3.1 The problem . 626.3.2 The solution . 626.3.3 Concrete example . 637 Further Work 66

4

Introduction
Although among the database systems the relational database systems are the wide-spreadest systems at this moment, constraint databases is a very perspective approachto change them.Constraint databases can contain quanti�er-free �rst-order formulas. With thehelp of these formulas constraint databases are able to express more than traditionalrelational databases. For instance one tuple can contain in�nite number of traditionaltuples.Constraint database systems can be categorized according to the type of the con-straint. Some of the well-known constraint types are for instance: linear constraints,polynomial constraints, integer gap constraints.In this system the constraints are Boolean Constraint, hence the name of thesystem is Datalog with Boolean Constraint. This system extends the possibilities ofa previous system (Datalog with Integer Set COnstraint = DISCO) which was im-plemented in the department. DISCO system allows only subset-equality constraintsbetween Boolean Algebra variables and constants, this system allows subset-equality,equality, and monotone inequality constraints between Boolean Algebra terms. Adescription of the DISCO system can be found in [2].First there is a theoretical overview (Chapter 1) based on [6], then a chapter

5
about the current implementation (Chapter 2), what kind of Boolean Algebra isimplemented, the main structure of the program.Because one really important part of the program is related to Relational Alge-bra, Chapter 3 describes the Relational Algebra formulas, how to store, convert andoptimize these formulas.The name of the implemented program is GreenCoat, Chapter 4 gives informa-tion about the user interface of the program. The predecessor of this program wasimplemented in the previous semester by Song Liu and I.Chapter 5 describes some examples and try to demonstrate the possibilities of thesystem.The system also supports the use of some multiset operators. Chapter 6 containsmore information about the multisets.

6

Chapter 1Datalog with Boolean AlgebraConstraints
In this chapter I give an overview of the 'Datalog with Boolean Algebra Constraint'.This was introduced by Kanellakis et al. [4] and extended by Peter Z. Revesz [6].First I present the basic de�nitions necessary to understand the concept. Later Ide�ne the syntax methods.1.1 Boolean AlgebraThe following de�nition is taken from [6], more information can be found aboutBoolean Algebras in [1].A Boolean algebra is a sextuple (�, ^, _, 0 , 0, 1), where � is the domain set,^ and _ are binary operators (^ : � � � ! �, _ : � � � ! �), 0 is a unary operator(0 : � ! �), 0 and 1 are two special elements of the domain (0 2 �; 1 2 �). They arealso called zero and identity elements. Every Boolean algebra satis�es the followingaxioms: (8x; y 2 � :)

7x _ y = y _ xx _ (y ^ z) = (x _ y) ^ (x _ z)x _ x0 = 1x _ 0 = x x ^ y = y ^ xx ^ (y _ z) = (x ^ y) _ (x ^ z)x ^ x0 = 0x ^ 1 = x0 6= 1Boolean term: All the elements of � (including 0 and 1) are Boolean terms. Allthe elements of V (set of variables), and all the elements of C, where C is the set ofconstants (except 0 and 1), are Boolean terms. If t1 and t2 are both Boolean terms,than t1 _ t2, t1 ^ t2, t01 are also Boolean terms.Precedence constraint: If a constraint has the following form: x ^ y0 = 0,(where x; y 2 � [V [C), then we call this constraint precedence constraint anddenote with x � y.Monotone Boolean function: A g Boolean function is monotone if 8xi �yi (1 � i � n) : g(x1; : : : ; xn) � g(y1; : : : ; yn).Monotone inequality constraint: g(x1; : : : ; xn) 6= 0 is a monotone inequalityconstraint if g is a monotone Boolean function.The following is a well-known fact for Boolean terms:Proposition 1.1 Every t Boolean term can be converted to disjunctive normalform (DNF):t(z1; z2; : : : ; zn) = Wa 2 f0; 1gn (t(a1; a2; : : : ; an) ^ za11 ^ za22 ^ : : : ^ zann)where z0 denotes z', and z0 denotes z.

8
1.2 Syntax of Datalog Queries with Boolean Con-straintsThe following basic de�nitions can also be found in [6]. Every Datalog programcontains a set of facts (constraint tuples) and a set of rules. The facts can be seen asspecial rules as well. The general form of the facts is:R(x1; : : : ; xk) : �f(x1; : : : ; xk) = 0; g1(x1; : : : ; xk) 6= 0; : : : ; gl(x1; : : : ; xk) 6= 0:where f and gi(1 � i � l) are Boolean terms.The general form of the rules is:R(x1; : : : ; xk) : � R1(x1;1; : : : ; x1;k1); : : : ; Rn(xn;1; : : : ; xn;kn); f(x) = 0;g1(x) 6= 0; : : : ; gl(x) 6= 0:where R;R1; : : : ; Rk are relation symbols (not necessary distinct symbols), x0s 2� [V [C, x is the set of variables in the rule, and f and gi(1 � i � l) are Booleanterms.It is not a real restriction that one side of the constraint is always 0. (f =g) � (((f ^ g0) _ (f 0 ^ g)) = 0) hence we can convert all the constraints to thisform. Without loss of generality we can also assume that we have only one equalityconstraint, because (f1 = 0; : : : ; fn = 0) � ((f1 _ : : : _ fn) = 0), therefore we canconnect several equality constraints to create one constraint.1.3 Quanti�er eliminationA quanti�er elimination method is an equivalency between an existentially quanti�edformula and a quanti�er-free formula.Quanti�er elimination is used for variables on the right-hand side of a rule which

9
do not occur as variables in the left-hand side.There are three elimination methods described in [6]. The correctness proofs ofthe elimination methods also can be found in the article.1.3.1 Elimination method for equality constraintsThe �rst elimination method [6, Lemma 2.2] (which originates with George Boole)can be used for equality constraints:9x(f(x; y1; : : : ; yk) = 0) � f(0; y1; : : : ; yk) ^ f(1; y1; : : : ; yk) = 01.3.2 Elimination method for precedence and monotone in-equality constraintsThe other [6, Lemma 2.4] can be used for precedence (x � y) and monotone inequalityconstraints:9x(z1 � x; : : : ; zm � x;x � y1; : : : ; x � yk;w1 � u1; : : : ; ws � us;g1(x; v1; : : : ; v1;n1) 6= 0;...gl(x; v1; : : : ; v1;nl) 6= 0;)is equivalent to:z1 � y1; : : : ; z1 � yk; z2 � y2; : : : ; zm � ykw1 � u1; : : : ; ws � us;g1((y1 ^ y2 ^ : : : ^ yk); v1; : : : ; v1;n1) 6= 0;...gl((y1 ^ y2 ^ : : : ^ yk); v1; : : : ; v1;nl) 6= 0;)where zi; yi; wi; ui; vi's are variables or constants. Although they are not necessarilydistinct symbols, they are di�erent from x.

10
1.4 Naive and Semi-naive evaluation methodsIf our input Datalog program does not contain recursive rules, then the evaluationof the program is simple, because it is enough to evaluate every rule only once usinga standard algorithm for the ordering of the rules. This algorithm is described forexample in [8]. If the input program contains recursive rules, then the rules have tobe evaluated more than once.1.4.1 Naive methodExample 1.1 The example is taken from [5]. We have an input database whichcontains parents-children pairs, and our goal is to �nd the ancestors of a speci�cperson. The Datalog program is the following: (There is a longer description of thisexample in section 5.1)children(P, C) :- P={"parent1", "parent2"}, C={"person", "brother"}.children(P, C) :- P={"gparent1", "gparent2"}, C={"parent1", "uncle"}.children(P, C) :- P={"gparent3", "gparent4"}, C={"parent2", "aunt"}.children(P, C) :- P={"ggparent1", "ggparent2"}, C={"ggparent3"}.AAncestor(P) :- children(P,C), {"person"} <= C.AAncestor(P) :- children(P,C), AAncestor(P2), C /\ P2 != @.After evaluating all of the rules once, we get the parents (parent1, parent2) ofthe speci�c person. If we evaluate the rules again, we get the parents and grand-parents (gparent1, gparent2, gparent3, gparent4), of the person. After the third

11
evaluation we get the great-grandparents (ggparent1, ggparent2) too. After thefourth evaluation the method does not give new ancestors, hence we can stop.The previously used algorithm is called Naive method. The pseudo-code of themethod is the following: (taken from [8])for := 1 to m doPi := ;repeatfor i:= 1 to m doQi := Pi;for i:= 1 to m doPi := EVAL(i,Q1, . . . , Qm);until Pi = Qi for all i (1 � i � m);Where Pi is the tuples of the ith relation. Qi is the tuples of the ith relation inthe previous step. At the beginning we erase all tuples. Than repeat the steps ofthe algorithm until the results of the last two steps are identical. During one stepwe store the tuples �rst (Qi := Pi), than calculate the new tuples using the tuplescalculated in the previous steps. The calculation is done by the EVAL function (1.4.3).In the function, i denotes the index of the current relation, Q1; : : : ; Qm denote thetuples of the relations, which can be used by EVAL.1.4.2 Semi-Naive methodTha main disadvantage of the Naive method is that it recalculates the same tuples inevery iteration. In the previous example during the �rst step the algorithm calculates

12
the parents; during the second step the parents, and the grandparents; during thethird and fourth step the parent, grandparents, and great-grandparents. Thereforethe algorithm calculated the parents four times. If the number of the steps are greater{ and in a real application it is several times greater { then this disadvantage is alsogreater. The main idea of the Semi-Naive method is to omit these recalculations.If during the calculation we use only old tuples (tuples which were calculatedbefore the previous step), then we only recalculate some older tuples. Therefore if wewant to calculate new tuples we should use at least one new tuple (tuple which werecalculated during the previous step).Naturally the �rst step is an exception, because there are no new tuples beforethe �rst step, hence the �rst steps of the Semi-naive and Naive methods are identical.The pseudo-code of the semi-naive evaluation (also taken from [8])for := 1 to m do�Pi := EVAL(pi; ;; : : : ; ;)Pi := �Pirepeatfor i:= 1 to m do�Qi := �Pi;for i:= 1 to m do begin�Pi := EVAL INCR(i, P1, . . . , Pm, �Q1, . . . , �Qm);�Pi := �Pi - Pi;end;for i:=1 to m doPi := Pi [�Pi

13
until �Pi = ; for all i (1 � i � m);Where Pi denotes the tuples of the ith relation, �Pi the new tuples in the current,�Qi the new tuples in the previous step of the relations. At the �rst step we usethe EVAL function to calculate the tuples. Than we repeat the steps of the algorithmuntil there is no new tuples in the last step. In a step �rst we store the new tuples(�Qi = �Pi), then calculate the new tuples using EVAL INCR function (1.4.4). Afterthis we check whether the new tuples are really new tuples (�Pi = �Pi�Pi). At theend of the step we should update the value of Pi (Pi = Pi + �Pi). The EVAL INCRfunction has more parameters than the EVAL function, because the EVAL INCR functionneeds not only all the tuples, but the new tuples as well.1.4.3 EVAL functionThis function calculates new tuples from the previously known tuples. Every relationis converted to relational algebra formulas (3.1), and these formulas are optimized(3.2). By using these formulas, the EVAL function can easily calculate the new tuples.Every formula is a tree, and the leaves of the formulas are the relations. If wesubstitute the relations with the tuples of the relations and execute the relationalalgebra operators in the nodes, then the root of the tree will contain the new tuples.1.4.4 EVAL INCR functionThis function is similar to the EVAL function. The di�erence is that EVAL INCR shoulduse at least one new tuple during the calculation. To achieve this, we clone all therules as many times as relations occur in the right hand side of the rule. In the ith

14
clone we put a � before the ith relation. In Example 1.1 the clones of the rules ofrelation AAncestor:AAncestor(P) :- �children(P,C), "person" <= C.AAncestor(P) :- �children(P,C), AAncestor(P2), C /\ P2 != @.AAncestor(P) :- children(P,C), �AAncestor(P2), C /\ P2 != @.Instead of the original rules we convert and optimize these rules to relationalalgebra formulas. With this we have the possibility to calculate EVAL INCRThere is an other possibility to simplify these rules. In Example 1.1 childrenrelation has only facts, hence �children is always empty. Therefore all the ruleswhich contains �children can be eliminated. If we eliminate these rules we only haveone rule left:AAncestor(P) :- children(P,C), �AAncestor(P2), C /\ P2 != @.More generally if all the rules of relation R contain only facts, then we can elimi-nate every rule which contains �R in it.Although not implemented in the system, sometimes we can eliminate other rulestoo.Example 1.2 Assume that we have mother and father relations in our input data-base, and our goal is to �nd the ancestors of a particular person. First we can de�nea parent relation, and after that the solution is the same as in Example 1.1. Here isa part of the program:

15
mother(M,C) :- M == {"mother"}, C == {"child1", "child2"}.father(F,C) :- F == {"father"}, C == {"child1", "child2"}.parent(P,C) :- mother(P,C).parent(P,C) :- father(P,C).... Although the parent relation has two rules, and neither of them are facts, wecalculate the tuples of the parent relation in the beginning of the evaluation, andafter this step no new tuples will be added to this relation. Hence there is only onestep in which �parent is not empty. Therefore it would be possible for some of therelations to calculate the number of steps after � will be always empty and eliminatethe appropriate rules then.

16

Chapter 2Implementation
2.1 The implemented Boolean AlgebraChapter 1 gave a small overview of the basics of Datalog with Boolean Constraints.All the de�nitions, lemmas are working with all the possible Boolean Algebras. Al-though during the implementationmost of the system are working with all the possibleBoolean Algebras, only one Boolean Algebra is implemented.2.1.1 SetsIn the �rst Boolean Algebra, � contains the sets of integers and strings. Because ofstorage restrictions, � contains only �nite sets, or the sets which complement is �nite.It is not a strict restriction because the length of input �les are �nite, hence the usercan de�ne only these sets, and all the operators are closed. The Boolean Algebraoperators are de�ned in the following way: ^ � \, _ � [, 0 � complement set.We should de�ne 0 and 1 elements also: 0 = ; = fg; 1 = fg0 = complete set =set of all integers and strings.

17
2.2 Implemented quanti�er elimination methodsIn [6] P. Revesz describes three elimination methods. One of them works only withatomless Boolean Algebras. Because the implemented Boolean Algebra of Section2.1.1 is not an atomless Boolean Algebra, that method is not implemented. Theother two methods (described earlier in Sections 1.3.1, 1.3.2) are implemented in thissystem. The elimination method described in Section 1.3.2 can be used only if allthe inequality constraints are monotone constraints. The system does not check themonotonity, but it assumes that all the inequality constraints are monotone inequalityconstraints.2.3 Hardware and SoftwareThe system is implemented in Java language. Originally the system was implementedunder IRIX 6.2, using JDK 1.0.2 (Hardware: 4 CPU SGI R10000), although it wastested also under WinNT (Hardware: Pentium 200, Pentium 133, Pentium II 267)using Microsoft Visual J++ 1.1. Because one of the main properties of Java languageis portability, the system should work on most well-known systems even withoutrecompilation.The parser was implemented using Java Compiler Compiler (JavaCC), Version0.7pre3.2.4 Java program2.4.1 PackagesThe Java language supports using packages (collection of similar classes). The pack-

18Name Functionstorage Storage of Datalog programsrelalg Storage of Relational Algebra Operatorsrelalg.optimize RA optimization methodselimination Elimination methodsevaluation Naive & Semi-Naive evaluationparser The parserutil Miscellaneous classesTable 2.1: Packages of the Java program
ages of the system and their function can be seen in Table 2.1.relalg packagerelalg and its subpackage relalg.optimize contain classes related to relationalalgebra formulas. Chapter 3 contains more information about relational algebra for-mulas. The optimizationmethods (Section 3.2) are implemented in relalg.optimizepackage.elimination packageQuanti�er elimination methods (Section 1.3) are implemented in this package. Be-cause two methods are implemented, and the system does not know in advance whichone can be used, a new quanti�er elimination method is implemented. This methodis only a container of other quanti�er elimination methods (right now two methods),and tries to execute the �rst method, and if it is not possible, than the following oneuntil one of the methods was successful, or none of them was successful.

19
evaluation packageThis package implements the generic code of the Naive (Section 1.4.1) and Semi-Naive(Section 1.4.2) evaluation methods. The eval, eval incr functions are also de�nedin this package.parser packageThe function of this package is to parse the input �les and the user commands.Chapter 4 contains more information about the user commands and the input �leformat. The java source �les in this package is created by JavaCC from a grammardescription �le (.jj).storage packageThis package stores the Datalog programs. The hierarchy among the classes can beseen in Figure 2.1. This is not a superclass-subclass hierarchy, every class shown onthe picture contains one or more instances of the classes shown below the class. Atthe top of this hierarchy there is the Database class, which contains our database. Adatabase is a set of Relations. Every relation have one or more Rules. Every rulehave a head, which represented by a RelationTitle, and a body. A body can containsother relation names (RelationTitles), and Constraints. A Constraint can be anequality or an inequality constraint. Every constraint have the form: 'Boolean Term'= 0 or 'Boolean Term' 6= 0. A Boolean Term is represented by a Term. Because everyboolean term can be transformed to Disjunctive Normal Form (DNF), every term isstored as an array of basic Conjunctions (Conjunction). A basic conjunction is aconjunction of literals, which can be stored as an array of Literals. A literal can be

20
Database

ConstantVariable Element

RelationTitle

Relation

Conjunction

Constraint

Literal

Term

Rule

Figure 2.1: The hierarchy among the classes of storage package
a variable (Variable), an element of � (Element) and a constant (Constant). Theconstants are not implemented in the current version of the system, but it is worthto mention the possibility to integrate constants to the system.Element is an abstract class, it can contain the elements of all possible BooleanAlgebras. It de�ned the necessary method which has to be implemented to representa concrete Boolean Algebra. ElementSet is a subclass of Element it can store the el-ement of all the possible set-typed Boolean Algebras. The only non-abstract subclassof ElementSet is ElementFSet, which implements � = sets (Section 2.1.1). Figure2.2 shows a superclass-subclass hierarchy among these classes. Angled rectangle in-dicates that the class is not abstract, while oval-shaped rectangle indicates that theclass is abstract.

21

ElementSet

Element

ElemetFSet Figure 2.2: The subclasses of Element

22

Chapter 3Relational Algebra Formulas
3.1 Relational Algebra FormulasBecause the relational algebra formulas are described in several textbooks, for example[8], in this part I describe only the di�erences between the general relational algebraand relational algebra formulas used in this program.In this system there are four relational algebra operators: join (1), project (�),union ([), select (�). Because cross-product (�) can be seen as a special join, in thissystem join represents both of them. The other main di�erence, that join and unionoriginally are binary operators, hence the number of operands are always two. In thissystem the number of operand are greater or equal than two. For instance if we wantto represent the join of four relations, originally we need three join operators, the newsystem needs only one.The system stores relational algebra formulas as a tree, it makes easy to changethe formula, and to represent an operations if it has more than two operands. It isalso very useful when we want to visualize a formula.The input from the user contains Datalog rules, hence it is necessary to convert

23
these rules to relational algebra formulas. A conversion method is described in Ull-man's book [8, chapter 3]. However, the method works with pure Datalog rules, hencethat method needs to be extended.3.1.1 Converting a RuleA general Datalog with Boolean Algebra rule has the following form:R(X1; : : : ; Xk) : � Q1(Y1;1; : : : ; Y1;l1); : : : ; Qm(Ym;1; : : : ; Ym;lm); �1; : : : ; �nWhere m � 0 is the number of relations on the right-hand side, n � 0 is the numberof selections on the right-hand side. Although either m or n can be zero, they cannotbe zero at the same time. (n +m > 0).If m > 1 then �rst we need to join the relations on the right hand side. After thatwe can issue the selection one after the other. (It would be possible to combine theselections into one selection, but the optimization method works better if we do notcombine them.)If fY1;1; : : : ; Y1;l1; : : : ; Ym;1; : : : ; Ym;lmg � fX1; : : : ; Xkg then the right-hand sidecontains only variables which can be found in the left hand side, therefore it is notnecessary to use projection. Otherwise we need a projection (�X1;:::;Xk) as well.3.1.2 Converting a RelationFirst the algorithm converts all the rules of the relation. If the number of the rulesis greater than one then the algorithm connects the formulas with union.Example 3.1 If relation R has the following two Datalog rules:R(x,y) :- C(x,y).R(x,y) :- A(x,z), B(z,y), D(y), z != f1,2,3g.

24

D(Y)

Π X,Y
C(X, Y)

U

B(Z, Y)

σ
Z != { 1, 2, 3 }

A(X, Z) Figure 3.1: The formula of Relation R
then the algorithm �rst converts the �rst rule, and we get the formula: C(x; y). Nextthe second rule is converted yielding: �x;y(�z!=f1;2;3g(A(x; z) 1 B(z; y) 1 D(y))),and �nally the two formulas are joined together with a union operator. C(x; y) [�x;y(�z!=f1;2;3g(A(x; z) 1 B(z; y) 1 D(y))) (see Figure 3.1).3.2 Optimization of Relational Algebra FormulasAlthough after converting Datalog rules to relational algebra formulas we are ableto use the formulas, it is better to �rst optimize the formula. Using optimizationmethods we calculate a new formula from our original formula. The new formulashould be equivalent with the original one (if we evaluate it, the result should be thesame), and it should be evaluated faster. No algorithm can improve all formulas.

25
Usually the optimization algorithms improve the majority of the formulas, and leaveunaltered or even worsen some formulas.There are many optimization methods. The algebraic manipulation method usedin our system is described in the next subsection.3.3 Algebraic ManipulationThis method is also described in [8]. In this method we will use some equationsbetween formulas. These equations are also called laws. First we give a list of theselaws, and later an algorithm which can change the original formula using these laws.After the changes the new formula can be usually evaluated faster than the originalWe have to optimize only a subset of the possible formulas, because our formulasare originally Datalog programs.3.3.1 LawsWe use the following laws from [8]1. Commutative law for join: R1 1 R2 � R2 1 R12. Associative law for joins :(R1 1 R2) 1 R3 � R1 1 (R2 1 R3)3. Cascade of projections:

26
�A1;A2;:::;Ak(�B1;B2;:::;Bl(R)) � �A1;A2;:::;Ak(R)if fA1; A2; : : : ; Akg � fB1; B2; : : : ; Blg4. Cascade of selections:�F1(�F2(R)) � �F1^F2(R) � �F2(�F1(R))5. Commuting selections and projections:If the set of attributes in condition F is the subset of fA1; A2; : : : ; Akg:�A1;A2;:::;Ak(�F (R)) � �F (�A1;A2;:::;Ak(R))If the set of attributes in F is fAi1 ; Ai2; : : : ; Aimg [fB1; B2; : : : ; Blg:�A1;A2;:::;Ak(�F (R)) � �A1;A2;:::;Ak(�F (�A1;A2;:::;Ak;B1;B2;:::;Bl(R)))6. Communing selection with Join:If all the attributes of F are the attributes of R1:�F (R1 1 R2) � �F (R1) 1 R2If F = F1 ^ F2, and the attributes of F1 are only in R1, and the attributes inF2 are only in R2, then:�F (R1 1 R2) � �F1(R1) 1 �F2(R2)

27
If F = F1 ^F2, and the attributes of F1 are only in R1, but the attributes in F2are in both R1 and R2:�F (R1 1 R2) � �F2(�F1(R1) 1 R2)7. Commuting a projection with a join:fA1; A2; : : : ; Akg = fB1; B2; : : : ; Blg [fC1; : : : ; Cmg, where Bis are attributesof R1, and Cis are attributes of R2:�A1;A2;:::;Ak(R1 1 R2) � �B1;B2;:::;Bl(R1) 1 �C1;C2;:::;Cm(R2)3.3.2 PrinciplesThese are three main principles of algebraic query optimization:1. Perform selections as early as possible2. Perform projections as early as possible3. Combine sequences of unary operations3.3.3 The AlgorithmThe steps of the algorithm1. For each selection use rule (4) { (6) to move the selection down.2. Move projections down using rules (3), (7), If possible, delete projections.3. Use rule (4) to combine cascades of selection into one selection.

28
Move selections downIn this step our goal is to move selections as down as possible. Originally we have aset of selections (S1, S2, : : : ,Sk), and a set of relations (R1,R2, : : : ,Rl). In the originalexecution order, we connect the relations with a join operator (if the number of theoperations is greater than zero), than calculate the selections one after the other.During the optimization, we �rst check which relations and selections have com-mon variables. Let Vi be the set of relations which have common variables with Si.More formally:Vi = fRn j (variables in Rn) \ (variables in Si) 6= ;gA selection (Si) can be executed, if the join of all the relations mentioned in Vi isalready calculated. The join can contain other relations also.If Vi is empty or contains all the relations, then the selection is executed only afterwe join all the relations. Therefore we should �nd the place of the other selections.If 9i8j : Vi � Vj, then Si will be executed before all the other selections. If suchan index (i) does not exist, then the program chooses any index, which has a smallsize Vi. Next we modify the Vj (j 6= i) sets.Vj := (Vj n Vi [Si if Vi \ Vj 6= ;Vj if Vi \ Vj = ;As we can see, Vj contains not only relations but selections as well.The previously described method is one step of the optimization. This step shouldbe repeated until all the selections are chosen. If there are some relations which arenot used during the optimization (no selection contains any variables of the relation),then a �nal join should connect these relations and the selections.

29
σ

X /\ { 6, 8 } == @σ

σY /\ {4} == @

X /\ Y != @

X, YΠ

X /\ {2,4} == @

A(X, Z) B(V, Y) C(X) D(V, Y)

σ

Figure 3.2: The formula before the optimization
Example 3.2 Assume, we have the following Datalog program:R(X; Y) : � A(X;Z); B(V; Y); C(X); D(V; Y); X \ f2; 4g == @;X \ f6; 8g == @; Y \ f4g == ;; X \ Y ! = ;:the corresponding relational algebra formula (see Figure 3.2):�x;y(�x\y 6=;(�y\f4g=;(�x\f6;8g=;(�x\f2;4g=;(A(x; z) 1 B(v; y) 1 C(x) 1 D(v; y))))))�y\f4g=; and �x\f6;8g=; and �x\f2;4g=; each contain only one variable: y, x, andx respectively. The variables in �x\y 6=; are x and y. �x\y 6=; has common variables

30
with relations A,B,C, and D, therefore V1 = fA;B;C;Dg. Similarly, V2 = fB;Dg,V3 = fA;Cg, V4 = fA;Cg.There exists no Vi, which is the subset of all the other Vj's hence the algorithmchooses one selection, which has the smaller Vi. In this example the algorithm canchoose V2, V3, and V4, assume that it chooses V2. As we issue S2, we get the followingformula: �y\f4g=;(B(v; y) 1 D(v; y)).The new values of V1, V3, and V4 are: V1 = fA;B;C;DgnfB;Dg [fS2g =fA;C; S2g, V3 and V4 are unchanged because V3 and V4 has no common variableswith S2. (V3 = fA;Cg, V4 = fA;Cg)Now V3 � V1, V3 � V4 hence we can issue S3, and get �x\f6;8g=;(C(x) 1 A(x; z)).The new values of V1 and V4 are: V1 = fA;C; S2gnfA;Cg [fS3g = fS2; S3g, V4 =fA;CgnfA;Cg [fS3g = fS3g.Now V4 � V1, so the algorithm can issue S4, and we get �x\f2;4g=;(�x\f6;8g=;(C(x) 1A(x; z)))Finally we issue V1, and get �(x; y)(�x\y 6=;(�x\f2;4g=;(�x\f6;8g=;(C(x) 1 A(x; z)) 1�y\f4g=;(B(v; y) 1 D(v; y))))) (Figure 3.3)Moving Projections DownIn this step our goal is to move projections as down as possible. Originally we havea projection, below that maybe some selections and �nally a join (Figure 3.4) If it ispossible then we evaluate the projection before the join. Usually it is not possible,but we can eliminate at least some of the variables before the join.Denote PV the set of variables in the projection. Denote SV the set of variablesin the selections. Denote V [i] the variables of the ith branch of the join. All the

31
σ

X /\ Y != @

B(V, Y) D(V, Y)

Π

X /\ {6,8} == @σ

C(X) A(X, Z)

σ Y /\ {4} == @

X, Y

X /\ {2,4} == @σ

Figure 3.3: The formula after the �rst step of optimization
variable in PV or SV cannot be eliminated before the selections.If a variable occurs only in one branch, and the variable is not in PV or in SV ,then this variable easily can be eliminated before the join. For instance, if our originalformula is �(x)(A(x) 1 B(x; y)) as shown in Figure 3.5, then y occurs only in thesecond branch, therefore we can eliminate y before the join. The optimized formulais: A(X) 1 �(x)(B(x; y)) as shown in Figure 3.6.If there exist no variable which occurs only in one brach, then the algorithmchooses one variables which occurs in the least branches. If all the variables are occurin all the branches then the algorithm cannot eliminate any variables. If more than

32

B

.

.

.

1

1 lVV

SV

PV

lB

σ

σ

Π

. . .

. . . Figure 3.4: The variables of the formula
one variables occur in the same branches then the algorithm eliminates these variablesat the same time.After this step the branches of the join has changed, therefore the algorithm shouldrecalculate the values of V [i]0s. This recalculation is similar to the recalculation duringthe �rst step (Moving selections down) of the algorithm. There algorithm is runninguntil we cannot �nd any eliminable variables.Because one brach of the join can contain other join operators, after the algorithmmove a projection below the join, we should check whether it is possible to move theprojection even more below the other join. To achieve this the algorithm calls itselfin a recursive way. The new instance of the algorithm works only on a subtree(subformula) of the original tree (formula).Example 3.3 After the �rst step of the optimization we got the formula shown in

33

B(X, Y)A(X)

XΠ

Figure 3.5: Optimization input
X

B(X, Y)

ΠA(X)

Figure 3.6: Optimization output
Figure 3.3. The variables of the join are X, Y (PV = fX; Y g), the variables inthe selection are also X and Y (SV = fX; Y g). PV [SV = fX; Y g, therefore wecannot eliminate X and Y. The upper join has two branches. The variables in the�rst branch are: X, Z, therefore V [1] = fX;Zg. Similarly V [2] = fV; Y g. Z and Vare local variables because Z occurs only in the �rst, and V occurs only in the secondbranch. Therefore we can eliminate Z from the �rst branch before the join, and Vfrom the second one. The variables in the �rst brach are: fX;Zg. If we eliminate Z,we have only X, hence we should issue a �(X) below the join. In the same way weshould issue �(Y) below the second branch. Our new formula is shown in Figure 3.7.Finally the algorithm tries to move the projections even below the other joins.In the second branch, Y cannot be eliminated, because Y is a variable in the pro-jection (and in the selection also). V cannot be eliminated because it occurs in allthe branches. In the �rst branch X is ineliminable, because X is a variable in theprojection. Z is a local variable of the second branch, hence it can be eliminatedbefore the join. Therefore the algorithm can move the projection below the join, and

34
XΠ

B(V, Y) D(V, Y)

σ Y /\ {4} == @

X /\ Y != @

A(X, Z)

YΠ

X /\ {6,8} == @

X /\ {2,4} == @σ

C(X)

σ

σ

Figure 3.7: The formula during the second step of optimization
we get our new formula, which is shown in Figure 3.8.Connecting SelectionsThis is the �nal and the easiest step of the optimization. In this step, the algorithmcombine cascades of selection into one selection. The algorithm simply checks everyedge in the tree, and if both vertices of this edge are selections, then connects the twovertices and erases the edge.Example 3.4 In our example (Figure 3.8) there is only on pair of selections whichcan be connected. (�x\f2;4g=; and �x\f6;8g=;. After this step, we get our �nal formula,which can be seen in Figure 3.9.

35
σ

X /\ Y != @σ

Π

X /\ {6,8} == @

X /\ {2,4} == @

σ

B(V, Y) D(V, Y)

σ Y /\ {4} == @

Y

ΠC(X) X

A(X, Z)Figure 3.8: The formula after the second step of optimization
3.4 Calculating multiple joinsWhen we have to join more than two relations, then the simplest way to join themis to choose one tuple from each relation, create a new tuple and write the result tothe output relation. For instance we have four relations A, B, C, D, and we want tocalculate A(X; Y) 1 B(Y; Z) 1 C(Z; V) 1 (V;W)Assume that there are 100 tuples in the relations. In this case we have to create1004 = 108 tuples.

36
Π

X /\ Y != @σ

YX /\ {2,4} == @, X /\ {6,8} == @σ

B(V, Y) D(V, Y)

σ Y /\ {4} == @

C(X) Π

A(X, Z)

X

Figure 3.9: The formula after the optimization
A better solution if we join two relations, than join the third to the result of theprevious join, and �nally join the fourth to the last result. For instance if we calculateA(X; Y) 1 B(Y; Z), than the size of the result usually is less than 1002 = 104. Let usassume that the results always contain 100 tuples. In this case we have to calculate3 � 1002 = 3 � 104 tuples, which is less than 1 percent of the original calculation.Of course we do not know the size of the result relation before we create the re-sult. If the two relation have no common variables, than the join is a cross-product,so the size of the result relation is the multiplication of the size of the original rela-tions. In other cases we only know that the size of the result is not greater than themultiplication of the size of the original relations.If the algorithm is able to estimate the size of the resulting relation, then it is pos-sible to join the relations in a good order, therefore the algorithm is able to decrease

37
the cost of a multiple join. The good order can be determined using dynamic pro-gramming. Because the algebraic manipulation considerably decreases the occurrenceof multiple joins, and makes it more di�cult to estimate the size of the resulting rela-tion, this system does not change the execution order of the joins, but simply executesthe joins from left to right.

38

Chapter 4User's Manual
The user interface of the program is a character based interface. (One student in thedepartment is working on a Graphical User Interface)After staring the program the system waits for a user command. After the userenters the command, the system waits for the next command. This process is �nishedif the user exists from the system.With the help of some commands the user can change the values of the switches,with the other command the user can ask the program to give information or executea process. First I describe the switches and later the other commands.The user is also able to give a new rule or fact to the system. The general formof the rules and facts are described in Section 1.2. There are some di�erences:� The user can enter more than one equality constraint.� The user can enter constraints in which neither side of the constraint is zero.� The user can use not only [, \, 0 but � and � as well.� Because keyboard does not contain symbols like [, \, or the other operators,

39Mathematical In the system[\/, and\ /\, orR0 not(R), R'� <=, =<, [=� =>, >=, =]= =, ==6= !=, <>; @, ZEROTable 4.1: Operators
the user should use other symbols instead of. Table 4.1 shows the symbols whichcan be used by the system. Usually more than one symbols can be used, theyare separated by commas.4.1 SwitchesMost of the switches has two possible values, they are either turned on or o�. All thepossible values should be typed with small letters, in the examples the capital lettersshow the default value of the switch.� time on|OFF.If the switch is turned on, then program after each evaluation displays thetime used during the evaluation. It displays not only the total time, but somepart-time (for instance time used by di�erent relation operators) as well.All the time values are in second, and they are real second, not CPU second.� tempfile on|OFF.

40
If the switch is turned on, after each step of the Naive (Section 1.4.1) or Semi-Naive (Section 1.4.2) evaluation, the program prints out the derived tuples into atemporary �le ('temp.bld'). This �le is not being overwritten by the followingsteps, hence the user can analyse the results after each step. Although the �lecontain the results of more steps, each result has the same format as the input�le, therefore it is possible to use di�erent parts of this �le as an input �le, andcontinue an interrupted execution.� trace on|OFF.If the switch is turned on then the program display the inner representation ofa rule after a new rule added to the system.� optimize ON|off.If the switch is turned on, then the program uses relational algebra optimization(Section 3.2), if not then the program uses the original formula. The value ofthe switch should be changed before loading the input �le to make e�ect.� method old|naive|SEMINAIVE.With this switch the user can choose between the implemented evaluation meth-ods. The Naive (Section 1.4.1), Semi-Naive (Section 1.4.2) methods work withalso non-recursive and recursive queries, but the 'old' method works only withnon-recursive queries.4.2 Commands� exit|bye.

41
The command exists the program.� load|consult 'filename'.The command load the �le with the given �lename, and reads the queries fromthe �le. The format of the input �le is described in Section 4.3.� formula "R" [onto 'filename'].The command displays the relational algebra formula of "R" which is used bythe Naive evaluation (Section 1.4.1). If the user specify a �le name, then theformula will be printed out to the �le, otherwise it will be printed out to thescreen.� formuladelta "R" [onto 'filename'].The command displays the relational algebra formula of "R" which is used bythe Semi-Naive evaluation (Section 1.4.2). If the user specify a �le name, thenthe formula will be printed out to the �le, otherwise it will be printed out tothe screen.� display ["R"] [onto 'filename'].If the user do not specify a relation name then the program prints out the namesand the arities of all relations.If the user specify a relation name then the program prints out the rules of therelation.Similarly to the formula and formuladelta commands the user can name a�le, otherwise the result of the command will be printed out to the screen.

42
� displaydf [onto 'filename'].The command prints out all the derived facts in the database.Similarly to the previous commands the user can name a �le, otherwise theresult of the command will be printed to the screen.� memory.The command displays the total and the free memory used by the system.� clear.The command erases all the relations, rules from the database.� R(E1; : : : ; En)?With this command the user can ask the derived fact of a relation. Ei can beeither a variable or an element of �. One variable can occur more than once. Atthe �rst time using this command the system calculates the derived facts usingof of the evaluation method. Later the system uses the derived facts stored inthe memory, hence the answer will be faster.Note: This is the only command which ends with a '?' instead of a '.'.4.3 Input �le formatThe input �le starts with a line contains 'begin' and ends with a line 'end'. Betweenthese lines there are the rule de�nitions.The input �le may contain empty lines, one-line comments (after // as in C++or Java), multi-line comments (between /* and */ as in C, C++ or Java).

43
If a line would be too long it can be splitted into more lines, each line but the lastshould end with a '\' character. In the examples of this thesis we do not use the'\' character.

44

Chapter 5Examples
5.1 Ancestors example5.1.1 The problemThe ancestors example appeared in [5]. In the input database we store informationsabout parents and their children. Our goal is to calculate all the ancestors of oneparticular person.5.1.2 The input databasePure DatalogIn pure Datalog one of the easiest way to use the children relation. One tuple cancontains one parent and one child. For instance if husband and wife have threechildren: child1, child2, child3, then our input database is the following:children(husband, child1).children(husband, child2).children(husband, child3).children(wife, child1).

45
children(wife, child2).children(wife, child3).New systemIn the new system, we need only one tuple to represent the previous example:children({ husband, wife }, {child1, child2, child3}).ComparisonThe previous example shows that in the new system, we need fewer tuples to store thesame data. It also can be seen, that the tuples in the new system are more complexthen the tuples in pure Datalog. In the example we needed only one tuple instead ofsix. More generally, if a couple has k children, then the pure Datalog needs 2k tuples,in contrast to the new system, which needs only one.5.1.3 The Datalog programPure DatalogAAncestor(P) :- children(P, {"person"}).AAncestor(P) :- children(P, C), AAncestor(C).New systemAAncestor(P) :- children(P,C), {"person"} <= C.AAncestor(P) :- children(P,C), AAncestor(P2), C /\ P2 != @.

46
ComparisonThe program contains two rules in both systems. The rules are very similar, althoughthe new system has slightly more complex rules.5.1.4 The output databasePure DatalogIn the pure Datalog every tuple in the output relation represents one of the ancestors.New systemIn the new system every tuple in the output relation represents two ancestors.ComparisonThe new system contains half the number of tuples as pure Datalog.5.1.5 Execution complexityIn this comparison I assume that both systems are using the Semi-Naive or the naiveevaluation.Pure DatalogAt the �rst step, the system �nds the parents of person using the �rst rule. Thesystem should check all the children tuples, and �nd those in which person is thechild.Later we need to use the second rule, hence we need to evaluate a join.

47
New systemAt the �rst step, the systems �nds the parents of person using the �rst rule. Thesystem should check all the children tuples, and �nd those in which person is oneof the children.Later we need to use the second rule, hence we need to evaluate a join, and aselection.ComparisonThe �rst step is almost identical. Because the number of tuples is less in the newsystem, in that case the program should check fewer tuples. On the other hand,the tuples are more complex in the new system, hence to check one tuple is moretime-consuming. If we analyze one step, then we can �nd real advantages.If our goal is to �nd the ancestors of child3, then in the original system we shouldcheck all the six tuples. Check means here to evaluate child1 == child3, child2== child3, child3 == child3 . We should evaluate each of them twice, becauseeach children occur in two tuples.In the new system, we should check only one tuple. Check here means that weshould calculate the intersection of fchild3g and f child1, child2, child3 g. Itmeans, that we should evaluate child1 == child3, child2 == child3, child3 ==child3. In this case we need to evaluate these only once. Finally we should checkwhether the intersection is empty or not.In the later steps, both systems evaluate a join, the second one also evaluates aselection. If in the pure datalog system we denote the number of tuples in relationschildren and AAncestor Cp and Ap respectively, then the number of tuples in the

48
ggparent1 ggparent2

gparent4gparent1 gparent2 gparent3

parent1

cousin4wife

son daughter

granddaughtergrandson

daughterinlaw soninlaw

cousin3

parent2

cousin1

uncleswife uncle aunt

cousin2brotherperson

auntshusband

Figure 5.1: A family tree
new system are Cn = Cp2 and An = Ap2k , where k is the average number of children.Therefore the number of basic operation during join is Ap Cp in the old system andAn Cn = Ap Cp4k in the new system.If we are using Semi-Naive evaluation (1.4.2) than the algorithm uses only thenew tuples, hence the number of basic operation is �ApCp in the old, and �An Cn =�ApCp4k in the new system.Similarly to the �rst step, one basic step is more complex in the second system,but there is still an advantage of using the new system. Usually the cost of theselection is much more less than the cost of the join, hence it is not a problem thatin the new system we need a selection as well.

49
5.1.6 Run-time resultsFigure 5.1 shows a family tree, which was used for test purposes. The squared rect-angles contain the names of the men, oval shaped rectangles contain the names of thewomen. In the program there is no di�erence between the two sex, it only helps tounderstand the family tree.Table 5.1 shows the running times. During the evaluation, the program calculatednot only the ancestors of person, but the ancestors of everybody. Because the opti-mization of relational algebra formulas does not change the formulas in this example,the optimization has no e�ect on the running-time (the small di�erences are onlybecause of the inaccuracy of time-measurement). As can be seen in the table theSemi-Naive evaluation is approximately eight times faster then the Naive evaluation,hence the Semi-Naive evaluation is a great improvement.5.2 Genome Map5.2.1 The problemThe following genome map problem is described in [7].The deoxyribonucleic acid (DNA) is a sequence of nucleotides. There are fournucleotides: adenine (A), cytosine (C), guanine (G), and thymine (T).Random substrings of a given DNA are called clones. Clones may overlap eachother. It is possible to cut a DNA string into clones with so called restriction enzymes.After cutting we loose all information about the order of the clones. Each clone canbe analysed further. By various enzymes the clones can be digested, and we canmeasure the fragments after the digestion. To eliminate the errors of measurement

50
we can round the length of fragments.As an input we have a set of clones (c1; : : : ; cn) of a DNA string, and the lengthsof the fragments of each clone.The goal is to �nd the original order of the clones. This problem is NP-complete.However there exist di�erent heuristics which make it possible to solve the problem.In this example we have an order of clones, and the task is to decide whether it isa possible order of clones or not.5.2.2 SolutionThe idea for the algorithm is described in [7].Further restrictionsTo apply this solution we need some further restrictions in the input database:� No clone contains any other clone.� No clone contains two di�erent fragments with the same length. Although it ispossible that two di�erent clones have di�erent fragments with the same length.� There exists k such that each fragment is contained in at most k clones.� If (c1; : : : ; cn) is the correct order of the clones then 8i (1 � i < n) : ci overlapsci+1AutomatonBecause every fragment is contained at most k clones, it is enough to analyze k + 1clones at the same time. We call k + 1 adjacent clones a window. At the beginning

51
the window contains the �rst k + 1 clones, but during the solution this window willshift right. We denote the clones in the window A1; : : : ; Ak+1.During the solution we will change the values of A1; : : : Ak+1. The values willchange if we shift the window, or if we pick fragments from the clones. We pickfragments from several clones (A1; : : : ; Al (1 � l � k)) at the same time. If a clonemust contain the fragments that we pick next, then we call the clone active. If Ajactive then 8i (i < j) Ai also active, hence one number is enough to store the set ofactive clones.We create a a non-deterministic automaton to solve the problem. The automatoncontains k + 2 states, where S0 is the initial state, H is the halt stage, and Si is thestage which represents when i clone active.Now we need to de�ne the transition of the automaton.If Ai � Ai+1 then we cannot pick a fragment from the �rst i clones which is notin Ai+1, therefore Ai+1 can be declared an active clone too.If A1 = ; then we can shift the window right.If there are fragments which are in the active clones and not in the �rst non-activeclone, then we can pick these fragments.Figure 5.2 shows an automaton when k = 5. This automaton is taken from [7].Because this system supports more Boolean operators than the DISCO system whichwas used in [7], the description of the edges of this automaton is simpler than in [7].

52

A3<=A4 A4<=A5

A5=A5\JA4=A4\J

A4=A4\J

A3=A3\J

A3=A3\J

A2<=A3

H

A1==@ A1==@ A1==@ A1==@

A1<=A2

A3=A3\J

J==A1\A2

J==(A1^A2)\A3

J==(A1^A2^A3)\A4

J==(A1^A2^A3^A4)\A5

J==(A1^A2^A3^A4^A5)\A6

window empty

init window

A1=A1\J

A2=A2\J

A2=A2\J

A2=A2\J

A2=A2\J

A1=A1\J

A1=A1\J

A1=A1\J

A1=A1\J

S4 S53

S0

S1 S2 S

Figure 5.2: The non-deterministic automation for k=5
C1

C5

C3

C4

C6

C2

C7

10851015 20 515353025Figure 5.3: The clones of the smaller example

53
5.2.3 Concrete examplesExample with input size n=11, k=3This is a small example, when k = 3. Figure 5.3 shows the clones with the fragmentsand also shows the correct order of the clones.To represent this example we need the following part of the input �le:clone(N,X) :- N == {1}, X == {25,30,35,15}.clone(N,X) :- N == {2}, X == {5,8,20,25}.clone(N,X) :- N == {3}, X == {15,10,5}.clone(N,X) :- N == {4}, X == {10,5,8,20}.clone(N,X) :- N == {5}, X == {20,25,30,35}.clone(N,X) :- N == {6}, X == {35,15,5}.clone(N,X) :- N == {7}, X == {15,5,10}.clone(N,X) :- N =={99}, X == @.firstClone(N) :- N == {3}.nextClone(N1,N2) :- N1 == {3}, N2 == {4}.nextClone(N1,N2) :- N1 == {4}, N2 == {2}.nextClone(N1,N2) :- N1 == {2}, N2 == {5}.nextClone(N1,N2) :- N1 == {5}, N2 == {1}.nextClone(N1,N2) :- N1 == {1}, N2 == {6}.nextClone(N1,N2) :- N1 == {6}, N2 == {7}.nextClone(N1,N2) :- N1 == {7}, N2 == {99}.nextClone(N1,N2) :- N1 =={99}, N2 == {99}.To implement the automation we need the second part of the input �le:pick(J, A, B) :- A = B \/ J, B /\ J ==@.S1(L, A1, A2, A3, A4) :- L == @, firstClone(s1), clone(s1, A1),nextClone(s1,s2), clone(s2, A2),nextClone(s2,s3), clone(s3, A3),nextClone(s3,s4), clone(s4, A4).

54Naive SemiNaiveProblem Without With Without Withoptimization optimization optimization optimizationGenome map(n = 11; k = 3) 1810 1146 103 98Genome map(n = 16; k = 5) | | 1008 932Ancestor 59.4 59.6 7.6 7.5Unavoidable sets 30.1 253.9 19.2 68.9Multiset 1197 1181 61 61Table 5.1: Test results (Pentium II 267 MHz)
// i -> i+1S2(L, A1, A2, A3, A4) :- L == @, S1(J, A1, A2, A3, A4), A1 <= A2.S3(L, A1, A2, A3, A4) :- L == @, S2(J, A1, A2, A3, A4), A2 <= A3.// i+1 -> iS1(L, A2, A3, A4, A5) :- L == @, S2(J, A1, A2, A3, A4),A1 == @, clone(c1, A4), nextClone(c1, c2), clone(c2, A5).S2(L, A2, A3, A4, A5) :- L == @, S3(J, A1, A2, A3, A4),A1 == @, clone(c1, A4), nextClone(c1, c2), clone(c2, A5).//i -> iS1(J, B1, A2, A3, A4) :- S1(JJ,A1,A2,A3,A4), J<=A1, J/\A2=@,pick(J,A1,B1).S2(J, B1, B2, A3, A4) :- S2(JJ,A1,A2,A3,A4), J<=A1\/A2, J/\A3=@,pick(J,A1,B1), pick(J,A2,B2).S3(J, B1, B2, B3, A4) :- S3(JJ,A1,A2,A3,A4), J<=A1\/A2\/A3,J/\A4=@, pick(J,A1,B1), pick(J,A2,B2), pick(J,A3,B3).GOOD(X) :- S1(J, @, @, @, @).I measured the evaluation time of this example in four di�erent situations. Table5.1 shows the results. All the numbers are real seconds, not CPU seconds, the test

55
C5

C1

C4

C3

C7

C9

C2

C8

C6

5 25 30 20 45 501035 8 25 40 20 15 35 15 40Figure 5.4: The clones of the bigger example
was running under WinNT (Pentium II 267 MHz). As can be seen the Semi-Naiveevaluation is a great improvement, we need only the 5.69 percent (optimization o�)or 8.55 percent (optimization on) of the time as the time of the Naive evaluation.The optimization has a remarkable e�ect with Naive evaluation (we save 36 percentof the time), and a a slight e�ect if optimization is on (4.8 percent). The reasonof the small e�ect is that the original rules are rather optimized, there is no muchpossibility to optimize the rules more. However it has to be mentioned that the timeof the optimization (less than 1 second) is much more smaller than this small e�ect,therefore the optimization is useful.Example with input size n=16, k=5The original example described in [7] was also tested in this system. The clones andthe fragments are also shown in Figure 5.4. Table 5.1 shows the test result of this

56
example too.5.3 Unavoidable Sets5.3.1 ProblemThe problem originates from two-player games, such as chess for instance. We canassign di�erent labels to di�erent positions. In chess we can use labels like: whitewins, black wins, draw. It is possible that a position has no labels assigned. If wede�ne more labels, then it is also possible that more then one labels are assigned toa position. For instance if we de�ne labels like: white has a queen, white has a rook,white has a bishop, then if white has two rooks and a queen, and no bishops, thenthe �rst two labels are assigned to the position.Assume that white wants to reach a position which has a speci�c label, and blackwants to avoid it. We can build a tree which contain the possible positions, thecurrent position is the root, and there is a directed edge between two positions if oneplayer can move from one position to the other. If the players turn in alternate, thenthis graph is a bipartite graph (one position contains the name of the player who willturn next). We assume that the graph is an acyclic graph. In chess this is reallyacyclic, because if the same position occurs thrice, then the game is draw.Our goal is to calculate those labels, which are unavoidable by black, if whitewants to reach the label.5.3.2 SolutionWe can assign labels to the leaves. To calculate the labels for the other nodes, we dothe following. If black has to move, then we calculate the intersection of the labels

57
1

2 3

4 5 6

7

13

{3,7} {3} {4,3} {3,4,5,6} {4,6,7}

16

8 9 10 11

12 14 15Figure 5.5: The acyclic graph
assigned to the children of the node, because black wants to avoid the label. If whitehas to move, then we calculate the union of the labels assigned to the children of thenode, because white wants to reach the label. If we assign labels one after the eachother, then after �nite steps we reach root, because the graph is acyclic.Mathematically the problem is the following: We have a directed acyclic bipartitegraph. Let A and B the two disjunct sets of vertices. The graph has a special vertexfor which the in-degree equals zero. We call this vertex root. Let us suppose that rootis in A. Sets are assigned to the leaves. If the sets of all the children of a vertex arealready de�ned, then we can assign a set to the vertex. If the vertex is in A, then weassign the union of the sets of the children, if the vertex is in B then the intersectionof the sets of the children. The goal is to �nd the set which is assigned to root.

58
5.3.3 ExampleIn this example the graph and the labels assigned to the leaves are shown in Figure5.5.To store the structure of the graph, we need the �rst part of the input �le:left(P,C) :- P == {1}, C == {2}.right(P,C) :- P == {1}, C == {3}.left(P,C) :- P == {2}, C == {4}.right(P,C) :- P == {2}, C == {5}.left(P,C) :- P == {3}, C == {5}.right(P,C) :- P == {3}, C == {6}.left(P,C) :- P == {4}, C == {7}.right(P,C) :- P == {4}, C == {8}.left(P,C) :- P == {5}, C == {8}.right(P,C) :- P == {5}, C == {9}.left(P,C) :- P == {6}, C == {10}.right(P,C) :- P == {6}, C == {11}.left(P,C) :- P == {7}, C == {12}.right(P,C) :- P == {7}, C == {13}.left(P,C) :- P == {8}, C == {12}.right(P,C) :- P == {8}, C == {14}.left(P,C) :- P == {9}, C == {14}.right(P,C) :- P == {9}, C == {15}.left(P,C) :- P == {10}, C == {14}.right(P,C) :- P == {10}, C == {15}.left(P,C) :- P == {11}, C == {15}.right(P,C) :- P == {11}, C == {16}.To store the sets of the leaves we need the following part:white(X, S) :- X == {12}, S == {3,7}.white(X, S) :- X == {13}, S == {3}.white(X, S) :- X == {14}, S == {3,4}.white(X, S) :- X == {15}, S == {3,4,5,6}.white(X, S) :- X == {16}, S == {4,6,7}.

59
The part which calculates the new sets contains only three rules:black(X, S) :- left(X, L),right(X, R),white(L, W1),white(R, W2), S=W1/\W2.white(X, S) :- left(X, L),right(X, R),black(L, B1),black(R, B2), S=B1\/B2.un(S) :- white(X, S), X == {1}.If we give this input �le to the system we get the result, that the set of unavoidablelabels is f3; 4g. Table 5.1 shows the used time during evaluation. This example alsoshows the advantage of the Semi-Naive evaluation. Because the number of iterationsare relatively small in this example, the e�ect is not too big. This example also showsthat the optimization method may worsen a formula. This is very rare, the problemis that in this example the right-hand side of black and white rules contains fourrelations and a selection, and in most cases it is useful to evaluate selections beforejoin, in this special case join before selection would have been better.

60

Chapter 6Multisets
6.1 IntroductionA natural extension of the program is using multisets instead of sets. Multisets aresimilar data structures to sets, the di�erence is that a set can contain an element atmost once, while a multiset can contain several copies of an element. Unfortunately,multisets do not form a Boolean Algebra. However, multisets can be implementedusing a limited set of multiset operators, and applying other restrictions.6.2 Extension of the programWe allow the following multiset operators:� V1 � V2Where V1, and V2 are multiset variables. With this operator we can checkwhether one multiset variable is a subset of another multiset variable or not.� V =M

61V1 == V2 V1 � V2; V2 � V1V � E V2 = E; V � V2V � E V2 = E; V � V2V == ; V2 = ;; V � V2V == E V2 = E; V � V2; V2 � VTable 6.1: Other operators which can be expressed
Where V is a multiset variable, andM is a concrete multiset. With this operatorwe can change the value of the multiset variable.� V1 = V2 � V3Where V1, V2, and V3 are multiset variables. The value of V1 is calculated usingthe already known value of V2 and V3.Although we allow only these three operators, some other operators can be ex-pressed with these operators. Table 6.1 shows operators which can be expressed usingthe basic operators. In the table Vi's are multiset variables, E is a multiset constant.All the multiset variables and constants are denoted with a '*' sign in the input�le. There are also other restrictions related to multisets:� At most one multiset variable in every relation.� Only the �rst variable can be a multiset

62
6.3 An example6.3.1 The problemThe next example is also related to the genome maps, and described in [5]. In thisprevious genome map example we cut the DNA with an enzyme, and get clones, afterthis used an other enzyme to digest the clones. In this example at the beginningwe have two enzymes. We cut the original DNA with one of them and get the socalled row clones, cut the original with the other enzyme and get the so called columnclones. Neither the row clones nor the column clones can overlap each other. Afterthis we use the same enzyme to digest both the row and column clones.6.3.2 The solutionBecause of the genetic di�erence, we know the �rst row, and the �rst column clone.The structure of the row and column clones implies that one of these two �rst clonesis a subset of the other one. Assume the the �rst column clone is a subset of the �rstrow clone. We also know that at the beginning of the DNA, there are the fragmentsof this column clone (which are fragments of the �rst row clone also), and followingthis, that fragments of the �rst row clone which are not in the �rst column clone. LetS be the set of these fragments. The algorithm should �nd an other column clone,which is either a subset of S, or a superset of S. If the column clone is a subset of S,it means that we still have more fragments from the row clones than from the columnclones, hence we need to �nd an other column clone. If the column clone is a supersetof S, it means that we have more fragments from the column clones than from therow clones, hence we need to �nd a row clone now. The di�erence of the column cloneand S will be the new value of S. We can repeat this step, until S equals the empty

63
set, which means, that we �nd the same fragments in both the row and the columnclones. S will be empty at the end of the DNA, although there is a small possibilitythat S will be empty before that.The Datalog with Boolean Constraints program, which can solve this problem:down(*SS,UC,UR) :- initialc(*SS,UC,UR).right(*SS,UC,UR) :- initialr(*SS,UC,UR).down(*SS,UC,URR) :- down(*S,UC,UR), row(*R,M), *R <= *S,*SS = *S - *R, pick(M,UR, URR).down(*SS,UCC,UR) :- right(*S,UC,UR), column(*C,N), *S <= *C,*SS = *C - *S, pick(N,UC,UCC).right(*SS,UCC,UR) :- right(*S,UC,UR), column(*C,N), *C <= *S,*SS = *S - *C, pick(N,UC,UCC).right(*SS,UC,URR) :- down(*S,UC,UR), row(*R,M), *S <= *R,*SS = *R - *S, pick(M,UR,URR).halt(X) :- down(*X,@,@), *Y == *@, *X <= *Y.halt(X) :- right(*X,@,@), *Y == *@, *X <= *Y.6.3.3 Concrete exampleIn this example the DNA contains 28 fragments, ten row and nine column clones.Figure 6.1 shows the fragments of the DNA string, the row and column clones.Table 6.2 shows the process of the solution. The �rst column shows the expressionof the new value of S, the second column shows the new value of S. The third andfourth columns show the unused row and column clones.Table 5.1 shows the execution time of this example. The Semi-Naive evaluation

64
124947 11 510101012871318135 8 65271498 4

C8C6C1C3

R5

C4

28

C2C5C9C7

R7R6R3

17 105

R9 R10R2R4R1R8

Figure 6.1: The correct order of clones
S Row clones Column clonesC3 5,13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 4, 5, 6, 7, 8, 9R9 - S 13,18 1, 2, 3, 4, 5, 6, 7, 8, 10 1, 2, 4, 5, 6, 7, 8, 9S - C1 13 1, 2, 3, 4, 5, 6, 7, 8, 10 2, 4, 5, 6, 7, 8, 9C6 - S 7, 8 1, 2, 3, 4, 5, 6, 7, 8, 10 2, 4, 5, 7, 8, 9R8 - S 17 1, 2, 3, 4, 5, 6, 7, 10 2, 4, 5, 7, 8, 9C8 - S 8, 9, 14, 27 1, 2, 3, 4, 5, 6, 7, 10 2, 4, 5, 7, 9S - R3 14, 27 1, 2, 4, 5, 6, 7, 10 2, 4, 5, 7, 9S - R1 27 2, 4, 5, 6, 7, 10 2, 4, 5, 7, 9R4 - S 65 2, 5, 6, 7, 10 2, 4, 5, 7, 9C4 - S 8 2, 5, 6, 7, 10 2, 5, 7, 9R6 - S 4, 7 2, 5, 7, 10 2, 5, 7, 9C7 - S 4, 9, 12 2, 5, 7, 10 2, 5, 9S - R2 12 5, 7, 10 2, 5, 9R10 - S 10, 10, 11, 12 5, 7 2, 5, 9C9 - S 10 5, 7 2, 5R7 - S 5, 28 5 2, 5C5 - S 4 5 2R5 - S 5, 10 | 2C2 - S | | |Table 6.2: The solution

65
is a great improvement in this example too (it needs only about 5 % of the timenecessary for the Naive evaluation). However the optimization of Relational Algebraformulas has no important e�ect on the execution time of this query.

66

Chapter 7Further Work
� GUI: Currently the program has a character based interface, which can makedi�cult for the user to handle the program. The biggest disadvantage of thecharacter based interface is that sometimes it is too di�cult to interpret theresults, because the result is only a set of formulas.Currently a student (Song Liu) in the Department is working on a GraphicalUser Interface which will make easier to understand the results.� Approximation: Every elimination method have some restrictions on the in-put database. Sometimes we cannot use any quanti�er elimination methods.In these cases approximation may help, when we cannot compute the correctquanti�er-free formula, rather only create a formula which approximate theresult. A possible way of approximation is described in [3].� Multiset: Chapter 6 describes the an extension of the system, which makespossible to use multisets. Only a small subset of multiset operators are used inthis extension, it would be possible to implement more multiset operators.

67
� Indexing:Indexing can improve the speed of the database systems. However indexingis not too di�cult in traditional relational database systems, it is much moredi�cult in constraint database systems. A good indexing method would improvethe speed of this system.

68

Bibliography
[1] B. H. Arnold, Logic and Boolean Algebra,Prentice-Hall, INC. (1962)[2] J. Byon, P.Z. Revesz, DISCO: A constraint database system with sets, Proc.Workshop on Constraint Databases and Applications, pages 68{83 (1995),Springer-Verlag, Berlin/Heidelberg/New York.[3] Richard Helm, KimMarriott, Martin Odersky, Spatial Query Optimization: FromBoolean Constraints to Range Queries, Journal of Computer and System Sciences51, 197{201 (1995)[4] P.C. Kanellakis, G.M. Kuper, P.Z. Revesz, Constraint query languages. Journalof Computer and System Sciences 51:26{52. (1995)[5] Peter Z. Revesz, CSE 913 (Advanced Database Systems) class material, Universityof Nebraska-Lincoln, Spring 1998.[6] Peter Z. Revesz, The Evaluation and the Computational Complexity of DatalogQueries of Boolean Constraint Databases, International Journal of Algebra andComputation, to appear.

69
[7] Peter Z. Revesz, Re�ning Restriction Enzyme Genome Maps, Constraints 2, 361{375 (1997)[8] J. D. Ullman, Principles of Database and Knowledge-base SystemsComputer Science Press (1988).

